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Runge–Kutta time-stepping schemes with TVD central
di�erencing for the water hammer equations
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SUMMARY

In the present study, Runge–Kutta schemes are used to simulate unsteady �ow in elastic pipes due to
sudden valve closure. The spatial derivatives are discretized using a central di�erence scheme. Second-
order dissipative terms are added in regions of high gradients while they are switched o� in smooth
�ow regions using a total variation diminishing (TVD) switch. The method is applied to both one-
and two-dimensional water hammer formulations. Both laminar and turbulent �ow cases are simulated.
Di�erent turbulence models are tested including the Baldwin–Lomax and Cebeci–Smith models. The
results of the present method are in good agreement with analytical results and with experimental data
available in the literature. The two-dimensional model is shown to predict more accurately the frictional
damping of the pressure transient. Moreover, through order of magnitude and dimensional analysis, a
non-dimensional parameter is identi�ed that controls the damping of pressure transients in elastic pipes.
Copyright ? 2006 John Wiley & Sons, Ltd.

KEY WORDS: water hammer; Runge–Kutta scheme; unsteady friction

1. INTRODUCTION

The term ‘water hammer’ is used to describe unsteady �ow in pipes, which is generally caused
by sudden or rapid changes in �ow conditions. These changes could occur due to sudden valve
closure, pump start up or shut down, etc. This problem is of great practical importance, as it
could ultimately damage the entire piping system. A detailed review of water hammer theory
and practice is given by Ghidaoui et al. [1].
One-dimensional (1-D) models are available for unsteady �ow in pipes, which are based

on the conservation of mass and axial momentum. Pipe elasticity is included in the model
through the expression for the wave speed. The unknown variables are the pressure head and
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the average velocity at each cross section. The equations of conservation of mass and axial
momentum form a (2× 2) hyperbolic system that can be elegantly solved using the method
of characteristics (MOC). More details about the implementation of the MOC to the water
hammer problem can be found in Reference [2].
Other methods of solution for the 1-D model include implicit methods [3], Godunov meth-

ods [4] and �nite element methods [5]. However, MOC still remains the method of choice
for the 1-D problem.
The 1-D model provides an excellent prediction of the magnitude of the �rst pressure peak.

On the contrary, it underestimates the attenuation of the following pressure peaks resulting
in much higher simulated pressure values than those experimentally observed. The reason for
this is due to the inadequate representation of the frictional damping mechanism in the 1-D
model. Viscous damping is introduced in the model through a quasi-steady representation,
which evaluates the instantaneous shear stress by the value that would occur at the same
average velocity in steady �ow. Although this approximation gives good results for relatively
slow transients, it performs poorly in case of fast transients. The main problem of the quasi-
steady representation is that it assumes that the velocity pro�le in unsteady �ow would be
similar to that in steady �ow, which is not the case for fast transients in which strong
adverse pressure gradients could result in large regions of �ow separation and reversal in
the pipe.
Improvements to the quasi-steady approximation of the 1-D model were proposed by several

authors, such as in the work by Zielke [6], Brunone et al. [7–9] and Vardy et al. [10–12].
These modi�cations resulted in signi�cant improvements in the modelling of the attenuation
of the pressure peaks and showed that the 1-D assumption is an invalid assumption for fast
transients in pipes. Therefore, two-dimensional (2-D) models should be considered if accurate
simulations of fast transients are required, and if it is desired to understand how the velocity
pro�le behaves under transient conditions.
A rather limited number of simulations for the 2-D problem of unsteady �ow in elastic

pipes due to rapid transients are available in the literature [13–17]. In the 2-D model, the 2-D
form of the axial momentum equation is retained where the local velocity is now a function
of both the axial and radial directions together with being a function of time. Several schemes
were used to solve the governing equations such as the explicit predictor–corrector methods
or the implicit methods. In Reference [16], turbulence modelling was included through a
simple two-zone model based on the mixing length hypothesis in the turbulent core and
on Newton’s law in the viscous sublayer. However, it was reported that explicit predictor–
corrector schemes su�ered from stability limitations, while implicit schemes resulted in more
laborious computations.
The purpose of the present work is to introduce a method that solves both 1-D and 2-D

models using a fourth-order Runge–Kutta time-stepping scheme in order to extend the stability
region of the unsteady �ow solver. Also, numerical oscillations are prevented through the use
of second-order dissipative terms that are added in regions of high gradients and are switched
o� in smooth regions by using a switch that is total variation diminishing (TVD). Moreover,
alternative turbulence models are tested in the present study through the use of the Baldwin–
Lomax model [18] and the Cebeci–Smith model [19] in order to examine their ability to
simulate fast transients in piping systems. Finally, the non-dimensional parameter controlling
the viscous e�ects, and hence the damping of the pressure peaks, in unsteady pipe �ow is
identi�ed.
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2. NUMERICAL METHODS FOR 1-D UNSTEADY PIPE FLOW MODEL

The governing equations for the 1-D model, in matrix form, are:

@W
@t
+ B

@W
@x
=C

W =

[
H

V

]
B=

⎡
⎣V a2

g
g V

⎤
⎦ C=

⎡
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0

−fV |V |
2D

⎤
⎥⎦ (1)

The system is hyperbolic with the slope of the characteristic lines given by (V ± a). The
quasi-steady approximation for the viscous term is employed, where the value of the friction
factor (f) is obtained from the instantaneous value of the average velocity at the cross section
using the steady state relations.
A fourth-order Runge–Kutta scheme is used to integrate the system of equations in time.

Spatial derivatives are discretized using second-order central di�erence expressions. Second-
order dissipative terms, similar to those introduced by Jameson et al. [20], are added to the
equations in regions of high gradients to eliminate numerical oscillations. The dissipative
terms are e�ectively switched o� in smooth �ow regions. After adding the dissipative terms,
the system of Equations (1) can be re-written in the following form:

@W
@t
+ B

@W
@x
=C + Av(W ) (2)

(Av) represents the dissipative operator which is de�ned as follows:

Av(W ) =
1
�t
[�i+1=2(Wi+1 −Wi)− �i−1=2(Wi −Wi−1)]

�i+1=2 = 1
2 max (�i+2; �i+1; �i; �i−1)

(3)

where the index i denotes spatial location. In their numerical scheme, Jameson et al. [20] use
a blend of second- and fourth-order dissipative terms for the Euler equations. The fourth-order
terms are added to allow the calculations to converge to a completely steady state. Hence,
for unsteady problems as the one considered in the present study, there is no need for such
fourth-order terms. The numerical switch (�) represents a switch for detecting regions of high
gradients. Di�erent switches could be used. In the present paper, the TVD switch introduced
by Swanson and Turkel [21] is applied.

�i =
|Wi+1 − 2Wi +Wi−1|
(1−!)�TVD +!�

�TVD = |Wi+1 −Wi|+ |Wi −Wi−1|; �= |Wi+1 + 2Wi +Wi−1|
(4)

and 06!61. The TVD condition is attained at (!�1). To provide some insight about the
performance of the TVD switch (�), it is useful to re-write Equation (4), with (!=0), in
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Figure 1. TVD switch performance as a function of (r).

the following form:

�i =
|1− r|
1 + r

=
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⎩
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1 + r

r¿0

1 r60

r =
Wi −Wi−1
Wi+1 −Wi

(5)

Equation (5) is plotted in Figure 1. For smooth �ow regions (r = 1), the value of (�) is zero
and hence the dissipative terms are switched o�. Otherwise, for regions of high gradients, (�)
has a positive value with an upper limit of (�=1) and dissipation is added in these regions.

3. NUMERICAL METHODS FOR 2-D UNSTEADY PIPE FLOW MODEL

For 2-D axi-symmetric unsteady �ow, the Navier–Stokes equations can be written in the form
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(6)
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Some common approximations are used to simplify this set of equations for the case of
unsteady �ow in elastic pipes. The �rst approximation is to replace the radial momentum
equation by its boundary layer theory counterpart

@H
@r

= 0 (7)

In other words, the pressure head (H) is a function of (x) and (t) only. Mass conservation
is integrated over the whole cross section resulting in

@H
@t
+ V

@H
@x
+
a2

g
@V
@x
=0 (8)

Moreover, the �ow is assumed to be one-directional. Hence, the axial momentum equation
takes the simpli�ed form

@u
@t
+ u

@u
@x
=− g @H

@x
+
1
�r
@(r�rx)
@r

(9)

The shear stress term (�rx) is evaluated from

�rx = �(�+ �t)
@u
@r

(10)

where (�t) is the eddy viscosity, which is zero for laminar �ows and evaluated using a suitable
turbulence model for turbulent �ows. In the present study, two turbulence models are used to
examine their e�ectiveness in simulating transient turbulent pipe �ow. The tested turbulence
models are the Baldwin–Lomax model [18] and the Cebeci–Smith model [19]. A detailed
explanation of both models is given in Appendix A.
A numerical scheme similar to that applied to the 1-D model is used to solve the 2-

D model. The fourth-order Runge–Kutta scheme is used to integrate the mass and axial
momentum equations in time, central di�erencing is used to approximate the spatial derivatives
and second-order dissipative terms are switched on in regions of high gradients using the TVD
switch. The average velocity (V ) is evaluated from the local velocity (u) at each cross section
using the formula

V =

∫ R
0 u2�r dr
�R2

(11)

In the following section, numerical results of the (1-D) and (2-D) models are presented and
compared to analytical results and to experimental data available in the literature.

4. NUMERICAL RESULTS

Numerical results for a reservoir–pipe–valve con�guration are presented. The �rst simula-
tion is an inviscid 1-D simulation due to sudden valve closure. The pipe is divided into
200 parts with CFL=1. This case represents an extreme case with a steep pressure front
propagating in the pipe inde�nitely. The case provides a good test for the numerical model,
especially in terms of examining the numerical dissipation and dispersion aspects of the model.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:571–590



576 E. M. WAHBA

0 2 4 6 8 10 12 14 16 18 20

5

5

0

0.5

1

1.5

2

at/L

o)/
(a

V o
/g

)

Exact Solution

Figure 2. Pressure–time history at the valve (1-D simulation, inviscid case).

The exact solution of the problem is known when the convective acceleration terms are
neglected, hence V =0 in matrix B. This solution is represented by a pressure–time history
at the valve in the form of a square wave. A comparison between the results of the present
method and the exact solution is given in Figure 2. The dissipative terms, together with
the TVD switch, eliminate any numerical oscillations resulting in a monotonic behaviour as
evident from Figure 2. Numerical dissipation is also minimized resulting in sharp pressure
fronts, which keep their integrity over a long time. To demonstrate the e�ectiveness of the
TVD switch and the dissipative terms, the test case is re-simulated with no dissipative terms
(the switch � is set to zero at all spatial nodes). The results of this simulation are given in
Figure 3, which shows signi�cant dispersive errors, which contaminate the numerical solution.
The 1-D and 2-D models are used to simulate unsteady �ow in the reservoir–pipe–valve

system of Holmboe and Rouleau [22], for which both laminar and turbulent �ow experimental
data exist. The pipe has an inner diameter of 0.025m, a length of 36.09m and is made of
copper. Pressure signals directly upstream of the valve and at the pipe midpoint are recorded.
The operating �uid in the laminar �ow case (Reynolds number =82) is high-viscosity oil
(�=0:03484 N s=m2) and the wave speed is measured to be 1324m/s. For the turbulent �ow
case (Reynolds number =6166), the operating �uid is water with a wave speed of 1350 m=s.
The 1-D model is used to simulate the laminar �ow case. The pipe is divided into 200 parts

with CFL=1. The results of the simulation are given in Figures 4 and 5. The 1-D model
clearly underestimates the viscous damping of the pressure transient.
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Figure 3. Pressure–time history at the valve (1-D simulation, inviscid case, no dissipation).
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Figure 4. Pressure–time history at the valve (1-D simulation, laminar �ow, Re=82).
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Figure 5. Pressure–time history at the midpoint (1-D simulation, laminar �ow, Re=82).

Simulations using the 2-D model are performed. The pipe is discretized using 200 parts in
the axial direction and 60 parts in the radial direction with CFL=1. Comparisons between the
simulated pressure transients and the experimentally recorded ones at the valve and midpoint,
for the laminar �ow case (�t =0), are given in Figures 6 and 7, respectively. The results
con�rm that the attenuation of the pressure peaks could be e�ciently recovered using the 2-D
model. Further insight could be provided through monitoring the evolution of the velocity
pro�le during the transient. The velocity pro�le at the midpoint is plotted in Figure 8 at
various time instants. Figure 8 shows velocity pro�les that di�er signi�cantly from the steady
state parabolic pro�le, hence further con�rming the inadequacy of using the quasi-steady
approximation for the viscous term. In fact, at more than one time instant, the �ow in the
neighbourhood of the pipe wall is in reverse direction with respect to the average velocity
at the cross section, which means that the wall shear stress and the average velocity are not
even in phase.
The turbulent �ow case is simulated next. The pipe is discretized using 200 parts in the

axial direction and 160 parts in the radial direction with CFL=0:5. Both the Baldwin–Lomax
[18] and Cebeci–Smith [19] models are used to compute the Reynolds stress term via the
Boussinesq approximation.
The steady state turbulent velocity pro�le is needed as an initial condition for the un-

steady �ow computations. For fully developed steady pipe �ow, the shear stress achieves
its largest value at the pipe wall (�w) and decreases linearly to zero at the pipe centreline.
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Figure 6. Pressure–time history at the valve (2-D simulation, laminar �ow, Re=82).
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Figure 7. Pressure–time history at the midpoint (2-D simulation, laminar �ow, Re=82).
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Figure 8. Velocity pro�les at the midpoint at di�erent times (2-D simulation, laminar �ow, Re=82).

Hence, Equation (10) can be re-written in the following form:

�rx
�
=(�+ �t)

@u
@y
= u2�

(
1− y

R

)
(12)

where u�=
√
�w=� is the friction velocity. Following Wilcox [23], Equation (12) is integrated

using the trapezoidal rule to obtain the velocity pro�le, while the eddy viscosity (�t) is
evaluated from the turbulence model. It should be noted that for the Cebeci–Smith model, the
velocity thickness 	∗

v is not known until the entire velocity pro�le is determined. Similarly,
for the Baldwin–Lomax model, the value of ymax is not known until the entire velocity pro�le
is determined. Hence, an iterative procedure is required in order to obtain the steady state
turbulent velocity pro�le.
An initial assumption for (u�) is needed to start the computation. A good initial assumption

could be obtained from the friction factor (f) obtained from Prandtl’s universal law of friction
for smooth pipes at the desired Reynolds number

1√
f
=2 log(Re

√
f)− 0:8

u� =

√
fV 2

8
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Figure 9. Pressure–time history at the valve (2-D simulation, Baldwin–Lomax model, Re=6166).

However, it was shown by Wilcox [23] that for the same Reynolds number, computed (u�)
values using the Baldwin–Lomax and Cebeci–Smith models di�er by about 1–7% from the
values predicted by Prandtl’s formula. Hence, a shooting procedure is adopted in order to �nd
the right value for (u�) needed by the turbulence model to obtain the desired �ow rate.
Unsteady turbulent �ow simulations using the Baldwin–Lomax model [18] are given in

Figures 9 and 10, while those for the Cebeci–Smith model [19] are given in Figures 11 and
12. Comparisons with the experimental pressure transient recordings at the valve and midpoint
indicate that both turbulence models perform equally well in predicting the pressure transient
for unsteady turbulent pipe �ow.
For the sake of completeness, the turbulent �ow case is re-simulated using the 1-D model.

The results of the 1-D simulation are compared with the 2-D results obtained using the
Baldwin–Lomax model in Figure 13 at the valve. As seen from Figure 13, the e�ect of
the 2-D turbulence modelling is relatively small, unlike the laminar �ow case in which the
2-D modelling had a profound e�ect. Combining the previous statement with the fact that
numerical and experimental uncertainties could possibly have a larger e�ect than the 2-D
turbulence modelling e�ect, one should approach the good agreement shown in Figures 9 and
10 with caution. On the other hand, the ability of the 2-D turbulence model to e�ectively
capture the rounding of the pressure peaks, which was completely missed by the 1-D model,
should provide more con�dence in the quality of the 2-D turbulence modelling. At any rate,
more experimental unsteady turbulent �ow data are needed for further validation of the 2-D
unsteady turbulent �ow modelling.
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Figure 10. Pressure–time history at the midpoint (2-D simulation, Baldwin–Lomax model, Re=6166).
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Figure 11. Pressure–time history at the valve (2-D simulation, Cebeci–Smith model, Re=6166).
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Figure 12. Pressure–time history at the midpoint (2-D simulation, Cebeci–Smith model, Re=6166).
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Figure 13. One- and two-dimensional simulations at the valve (Baldwin–Lomax model, Re=6166).
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5. NON-DIMENSIONAL PARAMETER FOR VISCOUS EFFECTS
IN UNSTEADY PIPE FLOW

Further investigation of the unsteady friction damping mechanism is undergone in the present
section. The laminar test case (Re=82) is re-simulated using water as the operating �uid. The
Reynolds number is kept constant and equal to 82 by changing the steady state velocity in
the pipe. The same discretization is used as in the oil case, where the pipe is divided into 200
parts in the axial direction and 60 parts in the radial direction with CFL=1. The simulated
pressure transients with water as the operating �uid are compared with those of oil as the
operating �uid in Figures 14 and 15. Although both cases have the same Reynolds number,
the unsteady frictional e�ects are much stronger for oil than water. This rather surprising result
warrants a careful order of magnitude analysis of the axial momentum equation in order to
reveal the non-dimensional parameter governing viscous e�ects in unsteady pipe �ow.
Starting with Equation (9), the di�erent variables are normalized according to the following

relations:

u∗=
u
V0
; H ∗=

H
aV0=g

; r∗=
r
D
; t∗=

t
L=a

; x∗=
x
L

Note that the characteristic time scale is now of order (L=a) and not (L=V0), while the pressure
head is of order (aV0=g). Substituting into the axial momentum equation (9) and taking
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Figure 14. Pressure–time history at the valve for di�erent liquids (2-D simulation, Re=82).
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Figure 15. Pressure–time history at the midpoint for di�erent liquids (2-D simulation, Re=82).

(�t =0), without any loss of generality, the non-dimensionalized axial momentum equation
takes the form

@u∗

@t∗
+

(
V0
a

)
u∗ @u

∗

@x∗ = − @H ∗

@x∗ +
(
L�
aD2

)
1
r∗

@
(
r∗
@u∗

@r∗

)
@r∗

(13)

From Equation (13), it is clear that the convective acceleration is negligible with respect to the
temporal acceleration for low Mach number �ows. The non-dimensional parameter (aD2=L�)
is shown to control the viscous term instead of Reynolds number. It shows that unsteady
viscous e�ects are much stronger in longer pipes of smaller diameters, and in highly viscous
�uids of smaller wave speeds. To demonstrate the validity of the above analysis, the numerical
simulation with water as the operating �uid is repeated, but this time with �xing the non-
dimensional parameter (aD2=L�) equal to the oil �ow case. A comparison of the results of
the water and oil simulations is given in Figures 16 and 17 demonstrating, numerically, that
unsteady viscous e�ects are, in fact, governed by the non-dimensional parameter (aD2=L�).
The non-dimensional parameter (aD2=L�) could be identi�ed through an alternative

approach. In an illuminating paper by Sir George Gabriel Stokes [24], it was shown that
the hydrodynamic resistance a�ecting the motion of a pendulum in a �uid is dependent on
the non-dimensional parameter (D2=�T ), where T represents the periodic time. The impor-
tance of this parameter was realized in numerous �ow problems such as oscillatory sepa-
rated �ows over blu� bodies. A recent summary regarding this non-dimensional parameter is
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Figure 16. Pressure–time history at the valve for di�erent liquids (2-D simulation, aD2=L�=526:5).
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Figure 17. Pressure–time history at the midpoint for di�erent liquids (2-D simulation, aD2=L�=526:5).
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given by Sarpkaya [25]. This parameter could be e�ectively extended to the present problem,
which is concerned with viscous e�ects in unsteady pipe �ow, by noting that the periodic
time for unsteady �ows in elastic pipes is of the order (L=a). Hence, replacing (T =L=a)
into the non-dimensional parameter (D2=�T ) results in (aD2=L�), which is the same non-
dimensional parameter obtained from the order of magnitude analysis and veri�ed using
numerical experiments.

6. CONCLUSIONS

A fourth-order Runge–Kutta scheme is developed and used to simulate unsteady �ow in
elastic pipes due to sudden valve closure. Both one- and two-dimensional formulations of the
problem are considered. Spatial derivatives are discretized using a central di�erence scheme.
Second-order dissipative terms are added in regions of high gradients to prevent numerical
oscillations while they are switched o� in smooth �ow regions using a TVD switch. Both
laminar and turbulent �ow cases are simulated. Di�erent turbulence models are tested including
the Baldwin–Lomax and Cebeci–Smith models. The results of the present method are in good
agreement with analytical solutions and experimental data available in the literature. The two-
dimensional model is shown to successfully simulate the attenuation of the pressure peaks
during the transient. Moreover, through order of magnitude and dimensional analysis, a non-
dimensional parameter is identi�ed that controls the viscous e�ect in unsteady pipe �ow.

APPENDIX A: TURBULENCE MODELS

Two turbulence models are used in the present study, namely the Cebeci–Smith and the
Baldwin–Lomax models. The Cebeci–Smith model is a two-layer algebraic turbulence model,
with the eddy viscosity (�t) given by separate expressions in each layer

�t =

{
�ti y6ym

�to y¿ym
(A1)

where ym is the smallest value of y for which �ti = �to . The values of the eddy viscosity in
the inner layer, �ti , and the outer layer, �to , are evaluated from the following expressions:

�ti = l
2
mix

∣∣∣∣ @u@y
∣∣∣∣

lmix = 
y[1− e−y+=26]

�to = �Ue	
∗
v FKleb(y; 	)

where y+ is the dimensionless sublayer-scaled distance (u�y=�). The following closure coef-
�cients are used for the Cebeci–Smith model:


=0:4; �=0:0168
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The function FKleb is the Klebano� intermittency function given by

FKleb(y; 	)=
[
1 + 5:5

(y
	

)6]−1

where 	 is the boundary layer thickness, Ue is the boundary layer edge velocity and 	∗
v is the

velocity thickness de�ned by

	∗
v =

∫ 	

0

(
1− u

Ue

)
dy

The Baldwin–Lomax model is also a two-layer algebraic turbulence model in which the eddy
viscosity (�t) is again given by Equation (A1). The expressions for the eddy viscosity in the
inner and outer layers are

�ti = l
2
mix

∣∣∣∣ @u@y
∣∣∣∣

lmix = 
y[1− e−y+=26]

�to = �CcpFwakeFKleb(y;ymax=CKleb)

Fwake =min(ymaxFmax;CwkymaxU 2
dif =Fmax)

Fmax =
1



[
max
y

(
lmix

∣∣∣∣ @u@y
∣∣∣∣
)]

Udif = |u|max − |u|y=ymax

where ymax is the value of y at which lmix|@u=@y| attains its maximum value. The closure
coe�cients for the Baldwin–Lomax model are


=0:4; �=0:0168; Ccp = 1:6; CKleb = 0:3; Cwk =1:0

The Cebeci–Smith model has the distinct advantage of being easier to implement while the
Baldwin–Lomax model has the advantage of providing a better de�ned outer length scale. In
the present study, both models are used to examine their e�ectiveness in simulating unsteady
turbulent pipe �ow.

APPENDIX B: NOMENCLATURE

a wave speed
D pipe diameter
g gravitational acceleration
f Darcy friction factor
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H pressure head
H0 pressure head at steady state
L pipe length
r radial location across the pipe
R pipe radius
t time
u axial component of velocity
u� friction velocity

v radial component of velocity
V average cross-sectional velocity
V0 average cross-sectional velocity at steady state
x axial location along the pipe
y distance from pipe wall (y=R− r)
� numerical switch for detecting regions of high gradients
�t time step
�x spatial step in axial direction

� kinematic viscosity
�t eddy viscosity
� �uid density
� stress tensor
CFL a�t=� x
Re Reynolds number =VoD=�
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